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In this paper, a new method for calculating effective atomic radii within the generalized
Born (GB) model of implicit solvation is proposed, for use in computer simulations of bio-
molecules. First, a new formulation for the GB radii is developed, in which smooth kernels
are used to eliminate the divergence in volume integrals intrinsic in the model. Next, the
fast Fourier transform (FFT) algorithm is applied to integrate smoothed functions, taking
advantage of the rapid spectral decay provided by the smoothing. The total cost of the pro-
posed algorithm scales as OðN3 log N þMÞ where M is the number of atoms comprised in a
molecule and N is the number of FFT grid points in one dimension, which depends only on
the geometry of the molecule and the spectral decay of the smooth kernel but not on M. To
validate our algorithm, numerical tests are performed for three solute models: one spher-
ical object for which exact solutions exist and two protein molecules of differing size. The
tests show that our algorithm is able to reach the accuracy of other existing GB implemen-
tations, while offering much lower computational cost.

� 2008 Elsevier Inc. All rights reserved.
1. Introduction

Accuracy and speed are two primary objectives in developing computational techniques for modeling biomolecular sys-
tems [1] in aqueous environments where electrostatic interactions play an important role. Explicit solvent methods adopt
microscopic representations of both solute and solvent molecules and offer an accurate description of the molecular system.
However, these methods usually entail high computational cost. In contrast, implicit solvent simulations characterize the
solvent in terms of macroscopic physical quantities such as dielectric constants and Debye lengths, and provide a higher
speed in practical calculations while still providing a realistic description of the solvent environment.

In implicit solvent models [2], the degrees of freedom pertaining to water are integrated out and replaced by an effective
potential energy term, DG, acting on the degrees of freedom of the solvated molecule only. From the thermodynamics point
of view, this effective energy term corresponds to the free energy associated with the transfer of a solute molecule from vac-
uum to solvent, and is therefore referred to as solvation free energy. In practical calculations, DG, is most conveniently
decomposed into two parts, DGpol and DGnp, which are referred to as polar and non-polar solvation energy, respectively
[3]. The non-polar part, DGnp, is associated with the first step of the insertion process, at which empty space is created inside
solvent and filled with solute atoms whose charges were canceled. The polar solvation energy, DGpol, corresponds to the free
energy associated with charging the atoms of the neutral solute immersed in solvent, to their actual values.
. All rights reserved.
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The polar solvation energy is the more computationally expensive part in DG and it represents the bottleneck in computer
simulations of biomolecules. In principle, DGpol can be found exactly in the framework of continuous electrostatics in inho-
mogeneous media. Depending on whether free ions are present in aqueous solution or not, DGpol is given by the solution of
the Poisson or Poisson–Boltzmann (PB) equations, respectively, in which solute is treated as a medium of low dielectric con-
stant, typically � = 1–10, while the solvent is assigned a high dielectric constant � ¼ 80 [4]. As exact analytical solutions of
the PB equation exist only for a few solute geometries, in the general case of arbitrarily shaped solutes, this equation has to
be solved numerically. Apart from the more fundamental issues concerning applicability of continuous solvent representa-
tion at molecular length scales, the necessity to find a numerical solution severely limits the range of problems to which PB
model can be applied. Although much progress has been made recently [5,6] in developing efficient algorithms for solving PB
equation, such as finite difference and boundary element methods, overall these methods are still considered too slow to be
applied directly in molecular dynamic simulations of macromolecular systems. More commonly, numerical solutions of the
PB equation are used as benchmarks in developing other, faster models of electrostatic solvation.

The generalized Born (GB) theory [7,8] is one of the most successful fast though approximate approaches to electrostatic
solvation in biomolecular systems. The solvation energy DGpol in GB model is represented as a pairwise summation over all
atoms comprising a solute molecule, and is therefore relatively cheap to compute, compared to solving PB equation numer-
ically. A critical ingredient of this model is effective atomic radius, so-called Born radius, whose physical meaning is based on
the Born solvation model of spherical ions. The accuracy of the GB model was critically tested in relation to the PB theory,
which it was designed to approximate. Remarkably, very good agreement between the PB and GB results were reported for
model solutes of various shapes [9] as well as a large number of biomolecules of practical interest, proteins [10–12].

Although the generalized Born formula for electrostatic solvation is not computationally expensive per se, provided that
the effective Born radii are given, evaluating these radii presents a major computational challenge. The calculation of the
Born radii, which requires an exterior domain integration or an integration over the molecular volume for each atom, re-
mains the most expensive part in the GB theory. There are several methods including analytical and non-analytical ap-
proaches to obtain the Born radii. The analytical pairwise GB models [13–17] approximate the volume integral by a sum
of spherical integrals centered at each atom, in which the overlap region is compensated through an empirical correction.
The spherical integrals can then be computed analytically. Nonetheless, the non-analytical approaches usually give more
accurate results due to the deficiencies in the empirical corrections of analytical models. In one of the earliest and most
widely accepted studies on GB model by Still et al. [18], the Born radii were obtained by constructing a set of concentric
spherical shells and summing the fractional area of the shells inside the volume. In other papers, the Born radii were calcu-
lated by grid-based numerical methods, such as, using volume integration of the molecule based on a cubic grid [19], or
applying the Green’s function to convert the volume integral into a surface integral [20], or the approach of numerical quad-
rature techniques used in the density functional theory [21,22].

Despite much recent improvement, most grid-based calculations of Born radii available today are not sufficiently fast to
be applied in large macromolecular simulation [8]. As these methods usually need to compute integrals individually for each
atom, for a grid of OðN3Þ points in the computational domain containing the molecule, a direct calculation of the volume
integral has a computational complexity of OðMN3Þ, where M is the total number of the atoms within the molecular volume.
Even with the volume integrals reduced to surface integrals for a complexity of OðMN2Þ, the computational cost remains too
high for large atom number M in practical simulations. In this paper, we propose a new method to compute Born radii using
the fast Fourier transform (FFT) algorithm. Our method relies on a new formulation of the Born radius where the singularity
of the kernel function inside the exclusion sphere for each charge is removed by a smoothing function, resulting in high effi-
ciency and accuracy of the FFT calculations. The Born radii for atoms located off grid sites are obtained by interpolations from
nearby grid points. The overall complexity of our algorithm is linear (apart from a logarithmic factor) in the number of atoms
comprised in a molecule, M and the number of grid points N3 one uses to perform the FFT, OðN3 log N þMÞ. The grid param-
eter N is independent of M and is chosen such that sufficient accuracy in volume integrals over the biomolecules of interest is
achieved. By changing the smoothness of the kernel function, one can control the rate of its spectral decay, and therefore
keep the number of the grid points to a minimum. Comparing the complexity of our algorithm to other grid-based methods,
it is clear that our FFT-based method has an advantage. As we will demonstrate later in the text in direct comparisons, this
advantage becomes more pronounced for systems with large number of atoms.

The remainder of the paper is organized as follows: In Section 2, we review the approximate generalized Born theory.
Section 3 contains a new formulation of the generalized Born radius with smooth kernels. Then, a new FFT-based fast algo-
rithm is proposed in Section 4 while Section 5 contains numerical validation of the proposed algorithm for one model mol-
ecule and two protein molecules. Finally, Section 6 summarizes this paper with conclusions.
2. Generalized Born theory

In the implicit description of biomolecules in solvent environments, we approximate solvent as a uniform dielectric med-
ium and the solute molecule with a lower dielectric constant and partial charges at atomic centers. The electrostatic poten-
tial therefore satisfies the Poisson equation:
r½�ðrÞr/ðrÞ� ¼ �4pqðrÞ; ð2:1Þ
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where �ðrÞ is the dielectric constant taking value �in (�in ¼ 1 in most cases) inside the molecule and �ex outside the solute
molecule (�ex ¼ 80 for water) and qðrÞ is the charge distribution:
qðrÞ ¼
X

i

qidðr� riÞ; ð2:2Þ
with ri being the atomic position of the ith point charge of strength qi of both signs for i ¼ 1; . . . ;M. If ionic salt effects are to
be considered, the linearized Poisson–Boltzmann (PB) equation will be used in (2.1) instead (with the right hand side as a
linear function of /ðrÞ for the exterior region outside the molecule). Numerical methods for the Poisson equation for mole-
cules of arbitrary shape include finite difference methods [23], finite element methods [24] and boundary element methods
[25,26]. Among these methods the boundary element method has been known as one of the most effective PB solvers, when
used with fast multipole methods [27]. To compute the electrostatic solvation energy, we calculate the potential inside the
molecule for two exterior dielectric environments �ex ¼ 1 and �ex ¼ 80 for water solvent, denote the corresponding poten-
tials as /vac and /sol, respectively. Then, the difference of these two potentials gives a reaction field, /re ¼ /sol � /vac, based on
which we define the electrostatic solvation energy [7]:
DGpol ¼
1
2

Z
/reðrÞqðrÞdr ¼ 1

2

X
i

qi/reðriÞ: ð2:3Þ
Because of the high computational cost of solving the PB equation directly, much effort has been made in finding equivalent
models with a reduced cost. The generalized Born (GB) theory is accepted as the most popular substitution of the Poisson
equation, which provides an approximation to the solution of the Poisson equation with a relatively simple formula. The
starting point is the well-known Born formula [28] for the solvation energy of a single ion q of radius R immersed in a solvent
with the dielectric constant �:
DGpol ¼ �
q2

2R
1� 1

�

� �
; ð2:4Þ
which can be obtained analytically from the Poisson equation. The concept of the atomic radius R in the Born model is ex-
tended to polyatomic molecules, in which, for computational efficiency, it is assumed that the solvation energy is repre-
sented as a sum over the pairs of all atoms [18,29,30]:
DGpol ¼ �
1
2

1� 1
�

� �X
i;j

qiqj

fGB
: ð2:5Þ
Here, fGB is a function of the distance rij between atoms i and j, and their ‘‘effective Born radii” Ri and Rj. To be consistent with
the Born result for one particle and for two particles at a large separation, fGB has to interpolate between Ri and rij as the
interparticle distance tends to zero and infinity respectively. In this paper, we use the expression of Still et al. [18]
fGB ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

ij þ RiRj expð�r2
ij=4RiRjÞ

q
, which clearly satisfies these two conditions. The resulting solvation energy,
DGpol ¼ �
1
2

1� 1
�

� �X
i;j

qiqjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

ij þ RiRj expð�r2
ij=4RiRjÞ

q ; ð2:6Þ
contains atomic positions, atomic charges and effective Born radii as input. The Still’s formula for GB solvation energy was
shown to be very accurate in test calculations of a large number of model solutes [9,10]. While positions and charges are
readily available for a given configuration of the solute molecule to evaluate its solvation energy, the Born radii have to
be calculated separately. The physical meaning of the effective Born radius Ri of atom i in a solute molecule, is that it cor-
responds to the radius of the sphere centered at this atom, whose solvation energy is equal to the solvation energy this mol-
ecule would have if all its charges were canceled except for the charge on the target atom. Using this definition allows Born
radii to be computed directly by solving the PB equation numerically for a solute of arbitrary shape. As we noted earlier,
however, numerical solutions entail significant computational cost, which makes the direct evaluation of Ri impractical.

Much effort has been invested recently in developing approximate analytical formulations for Born radii, which avoid
solving the PB equation directly [10,18,21,31]. Historically, the first such formulation approximated electric displacement
created by charge i inside a solute molecule of arbitrary shape as coming from a point charge in homogeneous medium, that
is being Coulombic in form [7,15]. Termed accordingly as the Coulomb-field approximation (CFA), this GB formulation pro-
vides a simple expression for the Born radii as a volume integral:
1
Ri
¼ 1

4p

Z
Xex

1

jr� rij4
dr; ð2:7Þ
where Xex denotes the exterior domain outside the molecule and ri is the location of the atom i within the molecule. The CFA
is known to overestimate the Born radii of atoms, especially those located near the surface of the solute [9,21], and much
better models have been introduced recently [9,10]. Nevertheless, we use this approximation in the present work as it is
most widely accepted in the literature and available in software packages [8]. The main purpose of this paper is to prove
that an algorithm based on the FFT can be adapted for use in the GB theory of solvation. Once the methodology is available
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to compute Born radii within the CFA, it will be a matter of technicality to extend it to more accurate approximations. There-
fore, our starting point here is Eq. (2.7).

Typically, the integral over the exterior of a macromolecule in Eq. (2.7) is rewritten as an integral over the interior domain
Xin excluding a small sphere Si with a radius ai centered at the position of the charge (see [7]):
Fig. 1.
sphere
1
Ri
¼ 1

ai
� 1

4p

Z
XinnSi

1

jr� rij4
dr; ð2:8Þ
where the value of the integration outside Si
R

R3nSi

1
jr�ri j4

dr ¼ 4p=ai is used. Due to the arbitrary shapes of the molecule, there
is no analytical formula for Ri, and therefore, a numerical integration or approximate analytical formula is required.

3. A new formulation for the generalized Born radius with smooth kernels

In this section, we introduce a new method to calculate the generalized Born radius where the singularity of the kernel
around the atom site in (2.8) is replaced by a smoothing function, which will be called ‘‘a smoother”. We rewrite Eq. (2.7) in
the following form:
1
Ri
¼ 1

4p

Z
R3

Gðr� riÞdr� 1
4p

Z
Xin

Gðr� riÞdr; ð3:1Þ
where we assume the excluded sphere Si, embedded inside the molecule (Fig. 1(a)), has a common radius ai ¼ a for every
atom i. G is a smoothed version of the function 1=r4 inside the excluded sphere Si, i.e.,
GðrÞ ¼
Wn

aðrÞ; when r 6 a;
1
r4 ; otherwise;

(
ð3:2Þ
where the smoother Wn
aðrÞ produces an nth order continuity of GðrÞ at r ¼ a. For example,
W1
aðrÞ ¼ �

2
a6 r2 þ 3

a4 ; ð3:3Þ

W2
aðrÞ ¼

3
a8 r4 � 8

a6 r2 þ 6
a4 ; ð3:4Þ

W3
aðrÞ ¼ �

4
a10 r6 þ 15

a8 r4 � 20
a6 r2 þ 10

a4 : ð3:5Þ
Note that a larger n will lead to a faster decay in the spectral of GðrÞ in the Fourier frequency domain, such a fast decay will be
an important factor in the efficiency of the proposed method for calculating the Born radius with the FFT. The first integra-
tion on the right hand side of (3.1) can be calculated analytically as
1
4p

Z
R3

Gðr� riÞdr ¼ 1
4p

Z
R3nSi

1

jr� rij4
drþ 1

4p

Z
Si

Gðr� riÞdr: ð3:6Þ
In Eq. (3.6), the first integral on the right equals to 1
a while the second term is the integral of the smoother Wn

aðrÞ inside Si,
1

4p

R
Si

Gðr� riÞdr ¼ 1
4p

R
Si

Wn
aðrÞdr ¼ 3

5a ;
29

35a ; and 65
63a when n ¼ 1;2 and 3, respectively.
a b

An illustration of how integration in Eqs. (2.7) and (3.7) is carried out for atoms at grid points in the interior of a solute and near its surface. A small
Si is drawn around each grid point, that is: (a) fully inside the molecule and (b) partially outside of the molecule where Ai is the outlying part of Si .
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If the smoother radius a here is taken as the atomic radii, for instance, the van der Waals radius in literature, then, the
sphere Si is completely inside Xin. In fact the radius a can be chosen arbitrarily. If the sphere Si is not completely inside
Xin, as illustrated in Fig. 1(b). Eq. (2.7) will be rewritten as
1
Ri
¼ 1

4p

Z
R3

Gðr� riÞdr� 1
4p

Z
Xin

Gðr� riÞdrþ 1
4p

Z
Ai

1

jr� rij4
� Gðr� riÞ

" #
dr ð3:7Þ
in which Ai is the portion of Si outside Xin. Since the center of Si is inside Xin, the integration over the region Ai is not singular,
and can be calculated by a numerical quadrature or by an approximate analytical formula to be discussed below.

3.1. Analytical formula for the integration over Ai

We consider the integral in Ai for Eq. (3.7), which can be written in the form of a local spherical coordinate system with
the origin located at ri as
Z

Ai

1

jrj4
� GðrÞ

" #
dr ¼

Z p

0

Z 2p

0

Z a

0
HðrÞr2 sin wdr dhdw; ð3:8Þ
where HðrÞ ¼ 1
jrj4
� GðrÞ when r is in Ai and zero elsewhere. If we assume that the sphere Si is much less than the volume of

the molecule and the portion of the molecular surface can be approximated by a plane, then, Ai is a spherical cap of the
sphere Si. This assumption reduces the 3D integral to a 1D one:
4p
Z a

s
ðr2 � srÞ~HðrÞdr; ð3:9Þ
where s (s < a) is the shortest distance from ri to the plane approximating the portion of the molecular surface inside Ai andeHðrÞ ¼ 1
r4 �Wn

aðrÞ. We have
Z a

s
ðr2 � srÞ 1

r4 dr ¼ ða� sÞ2

2a2s
ð3:10Þ
and
 Z a

s
ðr2 � srÞW1

aðrÞdr ¼ 6a5 � 10a4sþ 5a2s3 � s5

10a6 ; ð3:11ÞZ a

s
ðr2 � srÞW2

aðrÞdr ¼ 58a7 � 105a6sþ 70a4s3 � 28a2s5 þ 5s7

70a8 ; ð3:12ÞZ a

s
ðr2 � srÞW3

aðrÞdr ¼ 130a9 � 252a8sþ 210a6s3 � 126a4s5 þ 45a2s7 � 7s9

126a10 : ð3:13Þ
4. An FFT-based algorithm for the Born radii

In this section, we present a new FFT-based algorithm to calculate the GB radii. The main tool will be the FFT for the eval-
uation of the second integral on right hand sides of Eqs. (3.1) and (3.7), which takes on the form
UðrÞ ¼
Z

Xin

Gðr� r0Þdr0: ð4:1Þ
Once UðrÞ is calculated on grid lattice points, the value UðriÞ corresponding to the ith off grid lattice atom can be obtained by
a simple interpolation from the nearby data on the lattice sites surrounding the atom. In order to use the FFT, we define an
indicator function for the molecular volume domain Xin:
f ðrÞ ¼
1; r 2 Xin;

0; otherwise;

�
ð4:2Þ
then the integral in (4.1) can be extended to the full space as
UðrÞ ¼
Z

R3
Gðr� r0Þf ðr0Þdr0 ¼ G � f ðrÞ; ð4:3Þ
which is a convolution fit for evaluation by the Fourier transform f̂ ðnÞ ¼ 1
ð2pÞ3=2

R
R3 f ðrÞe�ir�n dr. We will show later how the

transform can be implemented by the discrete fast Fourier transform (FFT) in 1D case (3D case will be done dimension
by dimension).

The FFT-based method to be proposed will give UðrijkÞ on the grid lattice sites rijk ¼ ðxi; yj; zkÞ;0 6 i; j; k 6 N at a cost of
OðN3 log NÞ. Then, UðraÞ for the ath off grid lattice site atom can be obtained by an interpolation from UðrijkÞ at a cost of



W. Cai et al. / Journal of Computational Physics 227 (2008) 10162–10177 10167
OðMÞ ¼ 8M, for instance, with a linear interpolation for M atom sites. In this paper, we use a weighted average of surround-
ing eight grid points by taking the inverse of the square of the distance as weights, which gives a better accuracy than the
linear interpolation, namely
UðraÞ ¼
X1

n¼0

X1

g¼0

X1

f¼0

WngfUðriþn;jþg;kþfÞ; ð4:4Þ
where
Wngf ¼
wngfP1

n¼0

P1
g¼0

P1
f¼0wngf

and wngf ¼
1

ðjra � riþn;jþg;kþfj2 þ dÞ
ð4:5Þ
and d is a small positive number to avoid a division by zero. Here, N is independent of M and only depends on the shape of the
molecule Xin, i.e., the lattice should be fine enough to resolve the boundary of the molecule within a prescribed accuracy.
Therefore, the total complexity is OðN3 log N þMÞ.

4.1. Decay conditions for the smoother’s spectral – bGðnÞ
The decay conditions of the smoother G and indicator function f in the Fourier frequency space will affect the cost of cal-

culating the convolution (4.3) by the fast Fourier transforms. Let us consider the 1D analog of (4.1) for the evaluation of
UðxÞ ¼
Z b

�b
Gðx� x0Þdx0 ð4:6Þ
for x 2 V ¼ ð�b; bÞ and
Gðx� x0Þ ¼
Wn

aðjx� x0jÞ; jx� x0j 6 a;
1

jx�x0 j4
; otherwise:

(
ð4:7Þ
Let f ðxÞ be the indicator function for domain V defined in (4.2), then, the 1D convolution corresponding to (4.1) is
UðxÞ ¼
Z þ1

�1
Gðx� x0Þf ðx0Þdx0 ¼ G � f ðxÞ: ð4:8Þ
Applying the Fourier transform, we have
bUðnÞ ¼ bGðnÞf̂ ðnÞ ð4:9Þ
with
bGðnÞ ¼ FfGðxÞg ¼ 1ffiffiffiffiffiffiffi
2p
p

Z 1

�1
GðxÞe�inx dx; ð4:10Þ

f̂ ðnÞ ¼ Fff ðxÞg ¼ 1ffiffiffiffiffiffiffi
2p
p

Z 1

�1
f ðxÞe�inx dx; ð4:11Þ
and, then, using the inverse Fourier transform, we have
UðxÞ ¼ F�1fbGðnÞf̂ ðnÞg ¼ 1ffiffiffiffiffiffiffi
2p
p

Z 1

�1

bGðnÞf̂ ðnÞeþinx dn: ð4:12Þ
Due to the fact that f ðxÞ is discontinuous at x ¼ �b and GðxÞ is Cn continuous at x ¼ �a with the smoother Wn
a , the decay

conditions of f̂ ðnÞ and bGðnÞ are
f̂ ðnÞ ¼ O
1
n

� �
; jnj ! þ1; ð4:13Þ

bGðnÞ ¼ O
1

nnþ1

� �
; jnj ! þ1: ð4:14Þ
If we further smooth the indicator function f ðxÞ, for example in the vicinity of x ¼ b, using f ðxÞ � � 1
p arctan kðx� bÞ þ 1

2 with k
a large real number, higher order of decay for f̂ ðnÞ can also be obtained.

4.2. Calculation of UðxjÞ in 1D case

We will follow two steps in the calculation of (4.8):

� Step 1. Using the decay condition of the Fourier transform of the smoother bGðnÞ, integral in (4.12) can be truncated to a finite
interval ½�Xp;Xp�, and the resulting integral will be approximated by an N-point quadrature rule using
f̂ ðnkÞbGðnkÞ; nk ¼ k 2pX

N .
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� Step 2. Each bGðnkÞ, f̂ ðnkÞ, defined by (4.10) and (4.11), only involves integral over a finite interval due to the compact sup-
port of f ðxÞ and rapid decay of GðxÞ, and will be approximated by another N-point quadrature.

Both steps can be implemented by the FFT, which has an OðN log NÞ complexity of evaluating the following two trans-
forms between data ff ðxjÞ;� N

2 6 j 6 N
2 � 1g and discrete Fourier coefficients f f̂ k;� N

2 6 k 6 N
2 � 1g:
f ðxjÞ ¼
XN=2�1

k¼�N=2

f̂ keikxj for xj ¼ j
2p
N
; �N

2
6 j 6

N
2
� 1; ð4:15Þ

f̂ k ¼
1
N

XN2�1

j¼�N
2

f ðxjÞe�ikxj ; �N
2
6 k 6

N
2
� 1: ð4:16Þ
Let e be an error tolerance of the whole algorithm, against which we truncate the integral over n 2 ð�1;þ1Þ; i.e.,
UðxÞ ¼ 1ffiffiffiffiffiffiffi
2p
p

Z þ1

�1
einxf̂ ðnÞbGðnÞdn � 1ffiffiffiffiffiffiffi

2p
p

Z Xp

�Xp
einxf̂ ðnÞbGðnÞdn; ð4:17Þ
with the truncation parameter X defined as follows based on the decay condition (4.13) and (4.14):
1

ðpXÞnþ1 ¼ e: ð4:18Þ
An N-point rectangle quadrature rule to the integral in (4.17) yields
UðxÞ �
ffiffiffiffiffiffiffi
2p
p

X
N

XN=2�1

k¼�N=2

einkxf̂ ðnkÞbGðnkÞ; ð4:19Þ
where nk ¼ k 2pX
N and N will be selected based on the Shannon sampling rate of T ¼ p

L for einL in the n variable
N ¼ 2pX
T
¼ 2XL: ð4:20Þ
Remark 1. In principle, the selection of N should also depend on the oscillatory behavior of the spectral function f̂ ðnÞ,bGðnÞ. In
case a larger N is needed to resolve the oscillations in f̂ ðnÞ, bGðnÞ, we can achieve that by increasing the size of L.

4.2.1. Computing UðxjÞ; xj ¼ j 2L
N 2 ½�L; L�;� N

2 6 j 6 N
2 � 1

Next, we will calculate the value of UðxjÞ at N-points inside the interval ½�L; L�. Again, the size of N will be based on the
Shannon sampling rate T ¼ 1

X for function e�iXpx in the x-variable, which gives again
N ¼ 2L
T
¼ 2XL: ð4:21Þ
Let
xj ¼ j
2L
N
2 ½�L; L�; �N

2
6 j 6

N
2
� 1; ð4:22Þ
then
UðxjÞ �
ffiffiffiffiffiffiffi
2p
p

X
N

XN=2�1

k¼�N=2

f̂ ðnkÞbGðnkÞeik2pX
N j2L

N ¼
ffiffiffiffiffiffiffi
2p
p

X
N

XN=2�1

k¼�N=2

f̂ ðnkÞbGðnkÞeikj2p
N ; ð4:23Þ
which can be evaluated by one FFT at a cost of OðN log NÞ.

4.2.2. Calculation of f̂ ðnkÞ; nk ¼ k 2pX
N ; jkj 6 N

2
As supðf Þ 	 ½�L; L�; we have
f̂ ðnÞ ¼ 1ffiffiffiffiffiffiffi
2p
p

Z 1

�1
f ðxÞe�inx dx ¼ 1ffiffiffiffiffiffiffi

2p
p

Z L

�L
f ðxÞe�inx dx; ð4:24Þ
which will also be approximated by an N-point rectangle quadrature rule
f̂ ðnÞ � 2L

N
ffiffiffiffiffiffiffi
2p
p

XN=2�1

j¼�N=2

f ðxjÞe�inxj ; ð4:25Þ
where xj ¼ j 2L
N .



W. Cai et al. / Journal of Computational Physics 227 (2008) 10162–10177 10169
As N ¼ 2XL, we have for � N
2 6 k 6 N

2

f̂ ðnkÞ ¼
2L

N
ffiffiffiffiffiffiffi
2p
p

XN=2�1

j¼�N=2

f ðxjÞe�ik2pX
N j2L

N ¼ 2L

N
ffiffiffiffiffiffiffi
2p
p

XN=2�1

j¼�N=2

f ðxjÞe�ikj2p
N ; ð4:26Þ
which can be evaluated by one FFT at a cost of OðN log NÞ.
The values for bGðnkÞ can be obtained by analytical formulae as to be shown later.

4.2.3. Algorithm I – 1D case
The following steps form the flow of the algorithm in the 1D case:

� Step 1. For an nth order smoother Wn
aðrÞ in (3.2) and an error tolerance e > 0, choose the truncation parameter X by
X ¼ 1
pe1=ðnþ1Þ ð4:27Þ
and set
N ¼ 2XL: ð4:28Þ
� Step 2. Compute f̂ ðnkÞ; nk ¼ k 2pX
N ; jkj 6 N

2 using the FFT according to (4.26).
� Step 3. Compute UðxjÞ; xj ¼ j 2L

N 2 ½�L; L�; � N
2 6 j 6 N

2 � 1 using one FFT according to (4.23).

4.3. Calculation of Uðxm; yn; zlÞ in 3D case

4.3.1. Analytical expression for bGðnÞ
The 3D Fourier transform bGðnÞ can be found analytically. We consider the 3D Fourier transform of GðrÞ defined by
bGðnÞ ¼ 1

ð2pÞ3=2

Z
R3

GðrÞein�r dr; ð4:29Þ
which is a spherical symmetric function of n due to the spherical symmetry of GðrÞ in the spatial domain. Therefore, the Fou-
rier transform at a radial distance q (by letting n ¼ ð0;0;qÞ) is
bGðnÞ ¼ 1

ð2pÞ3=2

Z 2p

0

Z p

0

Z 1

0
GðrÞeirq cos wr2 sin wdr dwdh; ð4:30Þ
where q ¼ jnj, and ðr; h;wÞ is the spatial spherical coordinate system with x ¼ r cos h sin w; y ¼ r sin h sin w and z ¼ r cos w.
Integration in w and substitution of the piecewise definition of GðrÞ yields
bGðnÞ ¼ ffiffiffi
2
p

p

Z 1

0
GðrÞr sinðrqÞ

q
dr ¼

ffiffiffi
2
p

p

Z a

0
Wn

aðrÞr
sinðrqÞ

q
dr þ

Z 1

a

sinðrqÞ
r3q

dr
� �

¼
ffiffiffi
2
p

p
ðIn þ IIÞ: ð4:31Þ
The second term II can be integrated to give
Z 1

a

sinðrqÞ
r3q

dr ¼ 1
a
�pl

4
þ1F2 �

1
2

;
1
2
;
3
2

;�1
4
l2

� �� �
; ð4:32Þ
where l ¼ aq, and 1F2ða; b; c; xÞ is the hypergeometric function
1F2ða; b; c; xÞ ¼
X1
m¼0

ðaÞm
ðbÞmðcÞm

xm

m!
;

with ðaÞm ¼ aðaþ 1Þ � � � ðaþm� 1Þ as the rising factorial.
For the first integral in (4.31), we have, for n ¼ 1;2 and 3,
I1 ¼ �
1

al5 ½lðl
2 þ 12Þ coslþ 3ðl2 � 4Þ sinl�; ð4:33Þ

I2 ¼ �
1

al7 ½lðl
4 � 12l2 þ 360Þ cos lþ 3ðl4 þ 44l2 � 120Þ sin l�; ð4:34Þ

I3 ¼ �
1

al9 ½lðl
6 � 12l4 � 1560l2 þ 20160Þ cosl

þ 3ðl6 � 20l4 þ 2760l2 � 6720Þ sin l�: ð4:35Þ
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In Fig. 2, the spectral f̂ and bG with different choices of smoother are plotted where Gn denotes a Cn continuity. We remark that
In is not convergent at l ¼ 0 due to higher order infinitesimal of the denominator than the numerator in In. Therefore, Inð0Þ
should be calculated by an extrapolation, for example for a first order accurate extrapolation, we can use Inð0Þ ¼ 2Inða2Þ � InðaÞ.

4.3.2. Algorithm II – 3D case
Let the molecule be contained in a rectangular box of size ½�Lx; Lx� 
 ½�Ly; Ly� 
 ½�Lz; Lz�. If the smallest box that contains the

molecule is ½�a; a� 
 ½�b; b� 
 ½�c; c�, then, due to the periodicity of the FFT, the computational box ½�Lx; Lx� 
 ½�Ly; Ly� 
 ½�Lz; Lz�
should be chosen such that Lx P 2a, Ly P 2b, and Lz P 2c to avoid the overlap of the images of f and G.

The following steps form the flow of the algorithm in the 3D case:

� Step 1. For an nth order smoother Wn
aðrÞ in (3.2) and an error tolerance e > 0, choose the truncation parameter X by
X ¼ 1
pe1=ðnþ1Þ ð4:36Þ

and set

Nx ¼ 2XLx; Ny ¼ 2XLy; Nz ¼ 2XLz: ð4:37Þ

� Step 2. Compute f̂ ðni;gj;vkÞ; ðni;gj;vkÞ ¼ i 2pX
Nx
; j 2pX

Ny
; k 2pX

Nz

� 	
;� Nx

2 6 i 6 Nx
2 � 1;� Ny

2 6 j 6 Ny

2 � 1;� Nz
2 6 k 6 Nz

2 � 1, using one

3D FFT for the following sums at a cost of OðNxNyNz logðNxNyNzÞÞ:
Fig. 2.
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f̂ ðni;gj;vkÞ ¼
8LxLyLz

ð2pÞ3=2NxNyNz

XNx=2�1

m¼�Nx=2

XNy=2�1

n¼�Ny=2

XNx=2�1

l¼�Nx=2

f ðxm; yn; zlÞe
�i2p mi

Nx
þ nj

Ny
þ lk

Nz

� 	
; ð4:38Þ

where i ¼
ffiffiffiffiffiffiffi
�1
p

.
� Step 3. Compute Uðxm; yn; zlÞ; ðxm; yn; zlÞ ¼ m 2Lx

Nx
; n 2Ly

Ny
; l 2Lz

Nz

� 	
2 ½�Lx; Lx� 
 ½�Ly; Ly� 
 ½�Lz; Lz�;� Nx

2 6 m 6 Nx
2 � 1; � Ny

2 6 n

6
Ny

2 � 1; � Nz
2 6 l 6 Nz

2 � 1, using one 3D FFT for the following sums at a cost of OðNxNyNz logðNxNyNzÞÞ:
Table 1
The ma

Grid siz
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0.03125
Uðxm; yn; zlÞ ¼
ð2pÞ3=2X3

NxNyNz

XNx=2�1

i¼�Nx=2
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k¼�Nx=2

f̂ ðni;gj;vkÞbGðni;gj;vkÞe
i2p mi

Nx
þ nj

Ny
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� 	
: ð4:39Þ
Remark 2. In the 3D case, the function f ðx; y; zÞ is the indicator function of the solute molecule, therefore, Nx;Ny;Nz should
be large enough so the boundary of the solute molecule is well resolved on the NxNyNz-lattice grid to ensure a prescribed
accuracy in the Fourier transform (4.38).

Remark 3. In (4.38) and (4.39), only the simplest rectangle quadrature rules are used. In fact, higher order equally spaced
Newton–Cotes formula could be used and the FFT could still be applicable.

5. Validation of the FFT-based algorithm

5.1. A model molecule – numerical accuracy

To test the accuracy and speed of the proposed method, we first implement a test example by taking a dimensionless unit
sphere:
Xin ¼ fðx; y; zÞ : x2 þ y2 þ z2
6 1g
as the interior region of a molecule. A window function W2
a is used as the smoother in (4.7). For the spherical geometry, the

3D exterior integral (2.7) can be computed exactly due to the radial symmetry of the sphere, i.e.,
1
Ri
¼ 1

2

Z p

0

Z 1

1

r2 sin w

ðr2 � 2rri cos wþ r2
i Þ

2 dr dw ¼
2ri þ ð1� r2

i Þ log 1þri
1�ri

4rið1� r2
i Þ

; ð5:1Þ
where ri (ri < 1) is the distance between the ith atom and the origin.
We test the accuracy of the FFT-based algorithms by computing the relative error in Ri for a uniformly distributed 100

charges along a radial direction. In cases where part of the sphere Si for a charge is outside the molecule, we can obtain
the height of the spherical cap Ai in (3.7) and the distance between the charge and the molecular surface analytically. In prac-
tical calculations, this can be done by defining a level set function CðrÞ [32,33] as in the next section, which is a signed dis-
tance function (being greater or less than 0 when r is inside or outside the molecule, respectively). The distance function CðrÞ
on a 3D grid can be evaluated by a fast sweeping algorithm [34] with a complexity OðNxNyNzÞwith NxNyNz grid points. As the
interior region in this test model molecule can be parameterized, the exact normal direction to the surface is known and,
therefore, it is straightforward to compute the distance along that direction for the charges close to the boundary.

We summarize our results in Table 1, which shows the maximum and average errors for different window sizes and grids
in a spatial region ½�L; L�3 with L ¼ 2. We remark that there are several sources for errors in the calculations of Born radius Ri.
The first source is the error in numerical quadrature involved in (4.23) (Step 3 in the FFT-based algorithms). The second
source comes from the interpolation of Born radii for atoms at off-lattice sites using the neighboring grid points. And the
last source results from the treatment of atoms whose small sphere has a portion Ai outside the molecule and an approxi-
mation for the shape of Ai is used in (3.7). These three different sources of error depend on the parameters of our algorithm in
a non-trivial way. In what follows we investigate their effect in detail. For the sake of comparison, we also implement the
solution of the grid-based GB method [21] with a Cartesian grid ½�1;1�3, which directly sums the data at the centers of grid
boxes for the numerical integration. This method is well known for its high accuracy, especially for solutes with complicated
surface geometry.
ximum and average relative errors of the FFT radii compared to the exact solution for a spherical solute of radius 1

e h a ¼ 0:25 a ¼ 0:2 a ¼ 0:15 a ¼ 0:1

Maximum (%) Average (%) Maximum (%) Average (%) Maximum (%) Average (%) Maximum (%) Average (%)

7.16 1.95 9.15 2.16 11.1 2.50 12.8 3.19
4.18 0.86 3.77 0.82 4.20 0.95 6.15 1.34
4.00 0.76 3.53 0.56 2.98 0.49 2.32 0.77



Table 2
Same as Table 1 but for the grid-based calculations

Grid size h a ¼ 0:25 a ¼ 0:2 a ¼ 0:15 a ¼ 0:1

Maximum (%) Average (%) Maximum (%) Average (%) Maximum (%) Average (%) Maximum (%) Average (%)

0.125 3.66 1.13 5.11 1.76 35.9 11.4 125.3 68.03
0.0625 3.82 0.61 3.22 0.63 2.57 0.74 10.37 3.31
0.03125 3.96 0.38 3.35 0.28 2.66 0.19 1.88 0.30
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Tables 1 and 2 contain the numerical errors for our FFT-based method and the original grid-based method, respectively. It
is seen that at the largest grid spacing h ¼ 0:125, the error is large for all sizes of the smoothing window radius a considered.
Both FFT and grid-based integration yield errors well over 1%. For increasing values of a, the error is seen to decrease grad-
ually. In the FFT-based calculations, this decrease is due to the faster decay in the spectral of the window function at larger a.
In the grid-based integration, small size of the window function a can not be efficiently resolved in a volume integration
using a grid of comparable spacing h � a. Note that for the smallest a ¼ 0:1, the FFT calculation yields a �3% error which
is a significant improvement over the grid-based calculation generating a 68% error. Comparing the results of FFT and
grid-based calculations for h ¼ 0:125 it is clear that the main source of error is space integral discretization and that the error
is unacceptably large.

As the grid spacing h is reduced, the Born radii computed using our algorithms become more accurate. At h ¼ 0:0625, both
FFT and grid-based errors show a tendency to decrease with increasing a, echoing the results observed for a larger h ¼ 0:125.
On a grid of higher resolution, h ¼ 0:03125, that tendency is reversed for the largest a considered. In the FFT calculation, the
error jumps from 0.56% at a ¼ 0:2 to 0.76% at a ¼ 0:25. In the grid-based calculation, a similar increase is from 0.28% to 0.38%.
That a non-linear behavior with a is observed signals that the dominant error in Born radii present at larger h due to the
numerical quadrature, has become comparable to the error resulting from the treatment of surface atoms at the smaller
h ¼ 0:0315. For the surface atoms, the approximation involved in calculating the volume of spheres overlapping with the sol-
ute becomes worse for larger a. Consequently, the total error in Ri grows. Analyzing the last rows in Tables 1 and 2 we conclude
that for a sufficiently fine grid network, it is possible to find a size of the window function a such that the cumulative error in Ri

reaches a minimum. For both FFT and grid-based algorithms the minimum error is well below 1%. The error is slightly higher,
0.49%, in the FFT algorithm than in its grid-based counterpart, 0.19%, highlighting the importance of the intrinsic numerical
errors present in the former algorithm that go beyond space discretization. Nevertheless, Tables 1 and 2 clearly show that the
new algorithm proposed in this paper is sufficiently accurate to yield reliable Born radii for a spherical solute.

To evaluate the cost-efficiency of our FFT algorithm, time-performance tests were carried out in comparison to the grid-
based method. The results of these tests are summarized in Fig. 3, which shows the CPU times for both methods imple-
mented on a notebook PC with AMD 1.90 GHz double CPUs and 2 G memory. As expected, the FFT-based algorithm incurs
a much less computational cost. It is seen in Fig. 3 that for the grid size h ¼ 0:0625, where the average error in Ri is below 1%
(see Table 1), the FFT algorithm becomes faster than the grid-based method when the number of atoms in a solute molecule
reaches 600. Typically, proteins of moderate sizes contain more than 600 atoms. It is clear, therefore, that for such proteins
the new method proposed here becomes advantageous. For a system composed of about 4000 atoms, the speed improve-
ment of our algorithm reaches one order of magnitude. For larger systems, the improvement is even more dramatic. For
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Fig. 3. CPU time vs. number of atoms for three settings of our new FFT-based algorithm with a smoother W2
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instance, starting at approximately 5000 atoms, FFT calculations on a finer mesh h ¼ 0:03125 with much improved accuracy,
become faster than the grid-based calculations on a coarser mesh of h ¼ 0:0625. We conclude from this analysis, that the FFT
algorithm offers a much better performance over the grid-based methods, and should therefore become the method of
choice in GB calculations of large solute molecules.

In the example of a spherical solute, the Born radii are known exactly, and, in principle, there is no need to evaluate Ri

using grid-based approach; FFT calculations could be compared to the known solutions directly. For an arbitrarily shaped
solute, however, the exact solution is not known and it is the grid-based solutions that serve as the reference point for com-
parison with the FFT algorithm. In view of this, it makes sense to compare FFT and grid-based solutions for a spherical solute,
to estimate the level of agreement one can expect between the two methods for an arbitrarily shaped solute. Fig. 4 presents
such analysis for the radius of the smoothing function a ¼ 0:2. It is visually apparent from the Born radii plotted in this figure
that the results of the FFT algorithm agree well with those of the direct grid summation. The smaller the grid spacing h the
better the agreement is observed. To characterize the agreement between the two data sets quantitatively, we use the stan-
dard correlation coefficient, defined as
Fig. 4.
W2

a ðrÞ; a
q ¼ EðXYÞ � EðXÞEðYÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EðX2Þ � E2ðXÞ

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EðY2Þ � E2ðYÞ

q ; ð5:2Þ
where E is the mathematical expectation, X and Y are FFT radii and grid-based radii, respectively. The correlation coefficients
we observe are very high, q ¼ 0:9936;0:9994 and 0.9999 for h ¼ 0:125;0:0625 and 0.03125, respectively.

5.2. Effective Born radii for proteins

A thorough investigation on the performance of the new FFT-based algorithm proposed in this work to large set of pro-
teins is underway and its results will be reported in a separate publication. Here in this paper we present our results for two
proteins, immunoglobulin binding protein [35] (PDB access code 3GB1) and human cyclophilin A [36] (PDB access code
1OCA). These two proteins differ in size significantly, containing 56 amino acids, 855 atoms and 165 amino acids, 2503
atoms, respectively, and thus serve well the aim of critically testing the performance of our algorithm. The indicator function
which defines the molecular domain is generated by the solvent accessible surface with a probe radius of 1.5 Å. The fast
sweeping method [34] with 8N3 operations is used to obtain the distance function from grid points to the surface. In order
to smooth the step-like discontinuity of the indicator function across the surface, a smoothing procedure based on a time
dependent heat equation [37] is employed with the indicator function as the initial condition so that there are 2–4 grid
points across the molecule boundary. We remark that smoothing treatment is also often used in generalized Born models
[22] and for the purpose of avoiding numerical instability in finite difference Poisson–Boltzmann solvers [38]. In our FFT
implementation, a cubic box of dimension L ¼ 32 Å was used for protein 3GB1 and a box of dimension L ¼ 40 Å for protein
1OCA. In Figs. 5 and 6, we plot the FFT results for different window size a, in comparison with the reference calculations of
the effective Born radii using the macromolecular modeling package CHARMM [39]. In the reference computations, the grid-
based version of the molecular volume GB formulation (GB/MV) of Brooks and colleagues [21] was used, with the grid spac-
ing set at 0.2 Å. Atomic charges and radii were adopted from the PARAM22 version of the CHARMM force field [40] and all
calculations were done in the Coulomb-field approximation.
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Fig. 5. Born radii computed using our new FFT-based algorithm vs. grid-based radii obtained in CHARMM [39] for immunoglobulin binding protein (PDB
access code 3GB1). In FFT calculations, 1283 grid points in domain ½�32 Å;32 Å�3 were used. Results for different smoothers W2
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Overall, the agreement between the Born radii obtained by our FFT-based algorithm and those derived in CHARMM is good.
Some scatter is seen in Figs. 5 and 6 but in general, it is clear that the two methods produce well correlated data. As mentioned
previously, there are several factors contributing to the numerical error in Ri, with one of them being how atoms close to
molecular surface are treated. A direct consequence of this approximation is that large window radii a should lead to large
errors for surface atoms. This is exactly the trend we observe for both proteins in Figs. 5 and 6. As the window radius a is
increased, the atoms with small Ri, that is those close to the surface, deviate more from the diagonal than do the atoms buried
inside the protein and whose Born radii are large. The surface atoms place an upper limit on how large a one is allowed to
adopt and still obtain accurate values for Ri. Much will depend on the geometry of a solute of interest, in deciding on what
radius a is optimal. The extent of correlation observed between FFT results and those obtained in CHARMM are summarized
in Table 3 for protein 3GB1 and in Table 4 for protein 1OCA. For the smaller protein 3GB1, it is seen that for all but the smallest
value of a considered, 3 Å, and a fine integration mesh h ¼ 0:5 Å, the correlation coefficient q > 0:95 is comparable to the
values reported in the literature for other GB implementations [21]. The correlation is even better for the larger protein
1OCA, where for all values of a tested, q > 0:96. It is not clear at the moment, what causes this improvement. Importantly,
Tables 3 and 4 show that q is not very sensitive to a as long as this parameter is larger than 4 Å. This observation gives hope
that a value of a between 4 and 6 Å would be acceptable for a large data set of proteins in our planned forthcoming systematic
study of the FFT-algorithm for more proteins.

Finally, to evaluate the time performance of our FFT-based algorithm, for comparison, we carried out grid-based calcula-
tions using the same set of grid parameters (comparison with CHARMM would not be appropriate here as CHARMM does
more than just calculation of Ri). The results of this comparison, presented in Table 4, show that the FFT approach is 5 times
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Fig. 6. Same as Fig. 5 but for the human cyclophilin A (PDB access code 1OCA). In the FFT calculations, 1283 grid points in domain ½�40 Å;40 Å�3 were used.
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Table 3
The correlation coefficients between Born radii computed for protein 3GB1 using the new FFT-based algorithm proposed in this work and those obtained using
grid-based integration within CHARMM [39]

Correlation coefficient CPU time (s)

h ¼ 1 Å h ¼ 0:5 Å h ¼ 1 Å h ¼ 0:5 Å

FFT, a ¼ 3:0 Å 0.945 0.931 4.64 38.78
FFT, a ¼ 4:0 Å 0.950 0.953 4.59 39.79
FFT, a ¼ 4:5 Å 0.949 0.956 4.67 38.82
FFT, a ¼ 5:0 Å 0.948 0.957 4.68 40.01
Grid-based 22.11 191.04

CPU time for both types of calculations is also shown.

Table 4
Same as Table 3 but for the protein 1OCA

Correlation coefficient CPU time (s)

h ¼ 1:25 Å h ¼ 0:625 Å h ¼ 1:25 Å h ¼ 0:625 Å

FFT, a ¼ 4:0 Å 0.969 0.962 4.59 39.99
FFT, a ¼ 5:0 Å 0.974 0.973 4.57 40.04
FFT, a ¼ 5:5 Å 0.974 0.975 4.57 40.00
FFT, a ¼ 6:0 Å 0.973 0.975 4.61 40.09
Grid-based 64.13 529.73
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faster than the grid-based approach for protein 3GB1, and 14 times faster for protein 1OCA. These speed improvements are in
line with what we observed for the spherical solute and they clearly demonstrate the advantage of using the FFT-based algo-
rithm for Born radii proposed in this work when computing GB solvation energy of large proteins.

6. Conclusions

In this paper, we have proposed a fast FFT-based algorithm to calculate the effective Born radii in the generalized Born
model of implicit solvation. The algorithm relies on a new formulation for the GB radii using a smooth kernel in the definition
of the GB radii via a convolution integral. Using the fast spectral decay of the smooth kernel in the Fourier space and the FFT
to calculate the convolution integral on a grid, the GB radii at grid lattice sites are obtained at a cost of OðN3 log NÞ with N
independent of the number of atoms M inside the molecule, only dependent on the geometry of the biomolecule and the
spectral decay of the kernel through (4.37) (see also Remark 2). The GB radii for off grid lattice sites are obtained by a simple
interpolation at a cost OðMÞ. Thus, the total cost for finding the GB radius using the FFT-based method for M atoms using a N3

grid is OðN3 log N þMÞ, thus yielding significant speed improvement over traditional grid-based methods, as demonstrated
by numerical tests of model spherical and protein solute molecules.
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